Researchers argue that a new protocol could address a vulnerability in state channels. Their work could ultimately have implications on blockchain scaling.
Blockchain technology, while promising, is nowhere near[1] powerful enough to support the volume of activity required to support a mass-adoption scenario.
The Second Layer
Many of the blockchain scaling solutions that researchers and developers are pursuing take place in the so-called "second layer." This term is used to denote the auxiliary platforms and protocols that, in one way or another, help reduce activity on the base layer blockchain (the fundamental blockchain around which a blockchain network is organized) or reduce the amount of data required to describe that activity.
The idea is to free up space in base layer blocks so that more data can be recorded to them, which allows a greater number of transactions and other state changes to be processed. (A state change is literally any change to the condition of any assets and/or accounts in a blockchain network. This includes but is not limited to transactions.)
State Channels and Execution Forks
One possible solution to this problem is the state channel[2].
State channels are essentially multi-signature wallets or contracts that only certain parties can access. When these parties agree to a state change, that change takes place within the channel but is not recorded to the base layer. In other words, a state change inside the channel does not affect the rest of the network, and in fact remains invisible to network nodes that lack access to the channel. It is only when the parties with access to a channel agree to write its current state to the blockchain, to add or remove funds, or